

Septic Systems

Presented by:

Terry Davidson P. Eng.

Ottawa Septic Bureau des systèmes System Office septiques d'Ottawa

SEPTIC SYSTEMS 101

WHAT IS A SEPTIC SYSTEM?

- A system of components used to treat, and distribute waste water into the ground.
- Also known as On-site Wastewater Treatment System

Types of Septic Systems:

- Class 1 Privy
- Class 2 Greywater Pit
- Class 3 Cesspool
- Class 4 Septic Tank and Distribution Field
- Class 5 Holding Tank

Class 4 -Septic Tank & Distribution Field

- Most common system
- Accepts both black water and greywater
- Different configurations:
 - Trench bed
 - Filter media
- Tertiary treatment
 - Higher level of effluent quality
 - = better for the environment
 - = smaller footprint
 - = less imported fill

FOCUS – CLASS 4 WASTE TO WATER

Where does wastewater treatment start?

PROCESSES WITHIN A SEPTIC TANK

Separation of Suspended Solids

- Storage
- Digestion
- Microbial Growth

THE SEPTIC TANK -CROSS-SECTION-

Main Components

- Inlet pipe
- Water & "good" bacteria
- Compartments or chambers
- Partition wall
- Baffles
- Effluent filter
- Access hatches

2006 Code Change

8.6.2.1. Septic Tank Systems

(1) An *effluent* filter shall be installed in the outlet flow path of every *septic tank* that discharges *effluent* to a *leaching bed*.

(2) The *septic tank effluent* filter required by Sentence (1) shall conform to the requirements of NSF/ANSI 46, "Evaluation of Components and Devices Used in Wastewater Treatment Systems", and shall be sized and installed in accordance with the manufacturer's recommendations.

(3) A secured access opening to allow for regular maintenance of the *effluent* filter shall

- The surface area is where solids impinge and either collect on the filter or become re-introduced into the water column.
- Microbial growth occurs on mesh.
- Require periodic maintenance.
- Uniform standard NSF46.

EFFLUENT FILTERS -IMPROVING PERFORMANCE-

- Prevents solids from exiting the tank
- Should be NSF 46 certified
- Some unapproved styles may be easy to retro fit but will not be reliable.

DISTRIBUTION FIELD

Leaching Beds

- Gravel filled trenches
- 90 cm from limiting layer
- ♦ 50 cm wide
- ♦ 60-90 cm deep
- 1.6 m spacing
- Evenly distributed
- Aerobic environment

LOCATION OF A SEPTIC SYSTEM

ALTERNATIVE ON-SITE TECHNOLOGIES

Beneficial for:

- Cottage and Residential Properties
- Area within close proximity to sensitive lakes and rivers
- Lands with shallow soils to bedrock or High groundwater table
- Properties with Clay soils
- Sloped sites....

EFFLUENT QUALITY

PARAMETER	SEPTIC TANK	TREATMENT UNIT
Effluent Quality	BOD ~ 200 mg/L TSS ~ 200 mg/L E.coli ~ 1 million cfu/100 mL	BOD = 10 mg/L TSS = 10 mg/L (tertiary standard) E. Coli ~ 10,000 cfu/100 mL
% treatment prior to soil absorption	10-20%	80 - 90%

• Higher quality effluent entering the soils allows for a reduced separation distance to bedrock or high groundwater table

ALTERNATIVE METHOD OF DISPOSAL FOR TREATMENT UNITS

Treatment units can be used in conjunction with conventional distribution fields as well.

Operation And Maintenance

Improper operation and maintenance can cause system failure

OPERATION AND MAINTENANCE

Tank Pump Out

- Every 3-5 years (depends on system size and load)
- When scum and sludge equal >1/3 of total tank volume
- Removes built up sludge
- Prevents solids from exiting tank

Locating the Treatment Unit

Basic methods to locate the treatment unit:

- Check first if the previous owner knows location of tank(s)
- Review any available plans/documents on the system
- Follow sewer pipe outlet in basement to determine exiting wall

Locating the Treatment Unit

- Observe seasonal indicators (no grass in summer-no snow in winter)
- Use a metal rod soil probe and test suspected side of house starting 1.5m (5ft.) from house wall (use extreme care- probes will puncture plastic tanks!)
- Check that there are not multiple tanks or other treatment units present

Assessing the Treatment Unit

•The following observations should be noted for septic tanks: (cont'd)

- Signs of biological activity in the liquid (healthy vs. dead)
- Possible water infiltration from cracks, joints, leaching bed backflow
- Measured dimensions of tank

<u>Caution</u>: A treatment unit is a confined space- do not enter without proper safety attire!

Locating the Leaching Bed

- Use similar techniques as for the distribution system
- Look for obvious indicators:
 - Partially raised mounds
 - Greener grass
 - Striping in the lawn
 - Sponginess when walked on
- Probe suspect area to determine the extent of bed

Assessing the Leaching Bed

- For test holes, record observations for: (cont'd)
 - **b** Thickness of clear stone
 - Pipe diameter, material, etc.
 - Presence of biomat
 - Presence of effluent or groundwater ponding
 - Characteristics of soil under trenches

Assessing the Distribution System

- For pump chambers, record observations on:
 - Float switches
 - Electrical control seals
 - Valve operation
 - Integrity of piping
 - **Alarm and float operation**
 - Ose volumes

Checking the Tank

- Have the tank pumped while present
- Check the scum and sludge depth for accumulation
- Check seal on tank lids
- Listen for water coming into the tank
- Check interior of tank

DO NOT ENTER THE TANK AT ANY TIME

Does Chloride Affect Tank Corrosion?

Corroded Outlet Baffles of two Tanks Receiving Water Softener Backwash – Does chloride accelerate the corrosion caused by H_2S gas?

Operation And Maintenance

- Protect your leaching bed
 - Avoid compacting soils
 - Avoid damaging pipes
 - Avoid saturation of leaching bed
 - Do not plant trees near leaching bed
- Control input
 - Practice water conservation
 - Reduce solid waste
 - Control discharge of harmful chemicals

OPERATION AND MAINTENANCE

Control input

- Practice water conservation
- Chlorine bleach
- Medicines
- Cigarette butts
- Antifreeze
- Paints or solvents Nail polish remover Chemical cleaners
- Gas, motor oil
- 3 ply toilet tissue or facial tissue
- Hair or dental floss
- Fats, Oils or Greases

Common Causes of Leaching Bed Malfunction

- Age
- Distribution box or header is off level
- Pumps not cycling properly
- Pump Floats fouled with grease
- Excess sewage flow and excess liquid getting to the ground surface

How Do You Know If You Have a Problem?

<u>Symptoms</u>

Soft & Spongy Ground Over Leaching Bed
Lush Patches of Grass Over Leaching Bed

Pools of Dark Water
Over Leaching Bed
Weak to Very Strong
sewage odour in bed area

Dangers of Improperly Functioning Systems

Effects

- Ground & surface water contamination
- Costly repairs or replacement

Take Action

Know your system

- Where it is & how it works
- Be alert to changes

Prevent problems (before they start)

- Control what goes into your system
- Proper maintenance
- Regular inspections
- Research, learn & share information

Initiate a re-inspection program

THE END

SOURCES OF INFORMATION

www.uoguelph.ca/orwc www.oowa.org www.rvca.ca